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A rule for quantizing chaos? 

M V Berry and J P Keating 
H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 lTL, UK 

Received 14 June 1990 

Abstract. We find a real function d!E) whose zeros approximate the quantum energy 
levels of a system with chaotic classical trajectories. A ( E )  is a finite sum over combinations 
of classical periodic orbits. It is obtained from Gutzwiller's infinite and divergent sum, 
representing the spectral density in terms of periodic orbits, by means of a resummation 
conjectured by analogy with a derivation of the Riemann-Siege1 formula for the Riemann 
zeros. We assess the practicality of the quantization condition. 

1. Introduction 

We seek an approximate quantization formula for the energy levels Ej of a bound 
quantum system whose Hamiltonian I? has a classical limit with chaotic trajectories. 
Despite many attempts (reviewed by Berry 1983 and Eckhardt 1988) such a formula 
has remained elusive, the main difficulty being the correct incorporation into quantum 
mechanics of the influence of the long classical orbits (Berry 1985, 1990)-a problem 
that does not arise for integrable systems. Here we intend to tackle this difficulty head 
on and obtain a rule 

A ( E ) = O  (1) 

determining the Ej as the zeros of a real function A containing explicit information 
about the classical motion involving only orbits of finite length. 

The hope is that the energies generated by (1) will be semiclassical approximations, 
with errors which vanish faster than the mean level separation as Planck's constant 
h + 0. A semiclassical approximation which fails this test is 

in which 

is the smoothed (Weyl) spectral staircase (counting function), giving the average 
number of levels E, < E. D is the number of freedoms of the classical system, with 
Hamiltonian H ( q ,  p) ,  and 0 denotes the unit step. The formula (2) is too crude because 
it ignores the spectral fluctuations whose nature (Bohigas and Giannoni 1984, Berry 
1987) reflects the underlying classical chaos. Nevertheless, the zeros of (2),  where 
I= ( j + i ) ,  do form a sequence of energies with the correct density, and will be the 
starting point for our treatment. 
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The derivation of the function A ( E )  will be based on a conjectured resummation 
of the divergent tail of the formula obtained by Gutzwiller (1971) (see also Littlejohn 
1990) for the spectral density as a sum over periodic classical trajectories. The resumma- 
tion is motivated by two observations. First, in order for the spectral density as 
represented by Gutzwiller’s series to have the correct singularities, the long orbits must 
encode the energy levels and hence, through the long-range correlations of these levels, 
the short orbits; an application of this ‘bootstrap’ idea was given by Berry (1985). 
Second, there is an analogy with the Rieman-Siege1 formula for the Riemann zeta 
function c(z). One of us (Berry 1986) has already presented an approximate version 
of this idea, but now we are able to work it out in more detail. Specifically, we have 
obtained the analogue of the well known Dirichlet series representing l ( z )  as a sum 
over the integers. It is this new result which forms the basis for the proposed resumma- 
tion scheme. 

The argument by analogy from quantum mechanics to the Riemann zeros has 
proved fruitful, leading for example to accurate predictions (Berry 1988) of the statistics 
of its extremely high zeros. Here we argue in the reverse direction, from number theory 
to quantum mechanics. As we will explain, the ‘Riemann-Siege1 lookalike’ formula 
has several attractive features, but might not be computationally effective. 

When this paper was in a late stage of preparation we received a preprint from 
Bogomolny (19901, describing a quantization condition in the form of an infinite 
complex determinant generated by a Poincari section of the classical motion. At this 
stage we are not sure how Bogomolny’s determinant can be expanded to yield our 
‘Riemann-Siegel’ expansion, or how our expansion can be compactified to give his 
determinant. 

2. Spectral determinant 

We start with an expression which obviously has zeros at the eigenvalues E,, namely 

A ( E )  = det{A( E, A)(  E - 8)} = I7 {A( E, E j ) (  E - E,)} 
J 

(4) 

where A, which has no real zeros, is introduced to make the product converge. Voros 
(1987) has given a thorough discussion of such regularizations. Typical examples are 
A = -1/ Ej,  which works for the particle in a one-dimensional box and leads to 

cc sin( di?) 
j=l T d z  

A ( E ) =  n ( 1 - E / j 2 ) =  

and A = -( l /Ej)  exp{E/( Ej + 1/2)}, which works for the harmonic oscillator and leads 
to 

where y is Euler’s constant. The precise form of the regularizer A will not be important 
here. 
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We shall need the trace of the resolvent, defined for arbitrary complex E by 

1 
E - H  g(E)=Tr-  (7) 

(regularized if necessary). In terms of g, the spectral staircase is 

1 
N (  E )  = - - Im Tr log{ 1 - ( E  + i.z )/ A) 

7T 

1 
= - - Im loE dE’  g(  E’+i.z) 

7T 

where E is real. The connection with A (  E )  comes from 

A ( E ) = d e t A e x p T r l o g ( E - f i )  (9) 

which can be written in the form 

A ( E ) = B ( E ) e x p  { - i T J ( E ) + l o E  dE’[g(E’)-g(E’)]} 

where B ( E )  is real and non-zero for real E and g is the smoothed resolvent trace. 
We shall use Gutzwiller’s formula for g - g as a sum over the classical periodic 

orbits with energy E ;  because the system is chaotic it is assumed that these orbits are 
isolated and unstable. If p labels the primitive orbits and m labels their repetitions, 
then in the semiclassical limit (Gutzwiller 1971) 

-i Tp exp{imSp/A} 
h Jldet(M,”-l)I s (E)-g(E)=-c  c 

Here Sp is the action of the primitive orbit (in which for convenience we have 
incorporated the Maslov index), Tp = dSp/dE is its period, and Mp its linearized 
PoincarC map; all three quantities depend on E, but we have not indicated this explicitly. 
Thus (10) becomes 

The difficulty is that, because of the exponential proliferation of long orbits (as 
exp(A ( E )  T)/A ( E )  T, where A denotes the topological entropy), (1 1) and (12) diverge 
when E is real. These sums diverge even when, as for quantum billiards on the 
pseudosphere (Balazs and Voros 1986), they are exact for complex E, in which case 
they constitute a version of the Selberg trace formula. To make the sums converge, we 
would need 

I m E > $ A ( E ) h  (13) 

(see, e.g., Eckhardt and Aurell 1989 or Berry 1990, and the classical sum rule of Hannay 
and Ozorio de Almeida 1984). However, we are forced across this ‘entropy barrier’, 
because we seek to discriminate individual levels and so must keep E real. To motivate 
the manipulations inspired by this observation, we must briefly review the analogous 
situation for the Riemann zeta function. 
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3. Riemann-Siegel analogy 

Riemann’s zeta function is defined as 

in the region Re z > 1 where the sum converges, and by analytic continuation elsewhere. 
‘Elsewhere’ includes the critical line Re z = f  where according to the Riemann 
hypothesis the non-trivial zeros lie. We seek an asymptotic ‘quantization condition’ 
determining the imaginary parts E of the zeros that are far from the real axis. 

An exact condition for the zeros is 

A ( E ) =  exp{-i[Im log T(d+f iE)- fE  log ~]} l ( ; - - iE)  = O .  (15) 

It follows from the functional equation for l ( z )  that A ( E )  is real for real E (Edwards 
1974). The phase in the exponential is related to the smoothed spectral staircase for 
the zeros: 

E T  
Im log T($+;iE) -+E log T = T[$(  E )  - 13 + fE log - -- 2 ~ e  8 (16) as E + CO. 

If we naively employ the Dirichlet series (14) on the critical line, we obtain 

OC exp(iE log n )  
A ( E )  - -exp[ -iT$( E ) ]  1 

n = l  

an expression that is neither real nor convergent. This difficulty can be overcome by 
truncating the series (17) and resumming its divergent tail by the Poisson formula 
together with the method of stationary phase (Berry 1986). The remarkable result is 
that for large E and truncation at n = I n t [ m ]  the resummed tail is itself a series, 
now finite, reproducing term by term the original series, with the crucial difference 
that the tail terms are complex conjugates of the ‘head’ terms. Incorporating this feature 
of self-reproduction, or ‘resurgence’, or bootstrapping, we obtain the real expression 

Int[J@7 cos{ T$( E )  - E log n} 
A ( E ) z - 2  1 1/2  

n = l  

This finite sum is the Riemann-Siege1 formula (Edwards 1974) which (with several 
correction terms) is employed in effective methods for computing Riemann zeros up 
to-at least-the lOt0th (Odlyzko 1990). 

The leading term n = 1 in (18) is just the crude approximation (2), oscillating on 
the scale of the mean separation of the zeros. Higher terms oscillate more slowly, and 
the highest term, at the truncation limit n = I n t [ m ] ,  is locally stationary in E. 
This follows from 

d 
d E  
-{T$(E)-E logn}=log 

The Riemann-Siege1 formula has a ‘semiclassical’ interpretation, following from a 
similar interpretation (Berry 1985, 1990) for log 5 when expanded as an Euler product. 
According to this, there is a classical system underlying the zeros, whose primitive 
periodic orbits have periods T = log p where p is prime; therefore repeated orbits have 
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periods m log p where m is integer. If the term E log n in (18) is interpreted as an 
action, the corresponding period is 

log n =log n p m p  = E  mp logp 
P P 

where p and mp are the primes and powers in the decomposition of n. Thus (18) is a 
sum over all linear combinations of orbits and repetitions, that is over ‘pseudo orbits’ 
(Berry 1986). This picture of A ( E )  as a real sum over pseudo-orbits, truncated at the 
term which does not oscillate, is what we now generalize. 

4. Riemann-Siege1 lookalike 

We will manipulate (12) into an analogue of the Dirichlet series (17), as it is from this 
representation that the Riemann-Siege1 formula was derived. Restricting ourselves to 
D = 2 ,  and remembering that we are considering unstable systems, we write the two 
eigenvalues of the symplectic PoincarC map Mp as 

exp(*ApTp) (map hyperbolic) 

-exp(*ApTp) (map hyperbolic with reflection) 
(21) 

where A, is the instability exponent of the primitive orbit p ;  for long orbits, A, tends 
to the Kolmogorov entropy of the system. For simplicity we give the argument only 
for the first case, and later state the modification necessary when the map is hyperbolic 
with reflection. Thus 

Idet(M,” - 111 = exp(mApTp)[l -exp(-mAPTp)]’. 

In (12) we have 
1 03 
1 

=exp(-h~4,T,) E exp(-mkApTp). 
d/det(M,” - 1)T k=O 

Now the sum over m in (12) can be evaluated as a logarithm, and we obtain 
X 

A ( E )  = B ( E )  exp{-ir$(E)} n n [l -exp{-(k+~)ApTp} exp{iS,/h}]. (24) 
p k = O  

This is a dynamical zeta function, the most familiar example being Selberg’s zeta 
function (McKean 1972). To obtain a sum rather than a product, we first make use of 
Euler’s identity 

X X am(-l)mXm(m-3)/4 
n ( l - a x k ) =  m = O  (x -1 /2 -x1 /2) (x -Lx) .  . . (X-m/2-Xm/2 (25) 

k = O  1 
Thus 

A ( € )  = B ( E )  exp{-ir$(E)} 
03 

X n  [ E ( - l ) m  exp{-~m(m-l)ApTp}exp{imSp/h} 
p m - 0  

x ( 1 fi det(M/p - 1) 
j = l  

where the term m = 0 is unity, 
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The phase factors suggest interpreting the new summation variable m as a repetition 
number. Expanding the product over primitive orbits gives the desired series, analogous 
to (17), which is the central result of this analysis: 

oi 

A ( E )  = B ( E )  exp{-ir$(E)} C C , ( E )  exp{iYn(E)/h}. (27) 
n = O  

Here n labels pseudo orbits, in which each primitive orbit p is repeated mp times 
(including zero), i.e. 

n = { mp} .  (28) 

We choose the labelling such that increasing n corresponds to increasing period of 
the pseudo orbits. Yn denotes the action of the pseudo-orbit: 

Yn = mpSp. 
P 

The coefficient C, is 
m - 1 / 2  

(-l)m~exp{-~mp(mp-l)ApTp} det(Mb-l) l )  3. (30) 

In the product, primitive orbits whose mp = 0 give factors unity. For primitive orbits 
that are hyperbolic with reflection, the contribution is identical in form, except for the 
replacement 

(31) 

If we try to imitate for l ( z )  the analysis leading from (12) to (27), that is to obtain 
the Dirichlet series from the exponential of the expansion of the logarithm of the Euler 
product, we encounter two differences at the start. Instead of (12), we have 

Int[(mp+ 1 ) /21  (-1)”. -P ( -1)  

The first difference is that here the exponent has a+sign instead of the-in (12); it is 
as though all the ‘Riemann orbits’-including repetitions-possess a Maslov index of 
T. The second difference is that instead of the determinant in the denominator of (12) 
there is here simply a power. What is peculiar is that these differences cancel, as it 
were: the absence of a determinant means that the ‘repetition’ sum can be evaluated 
immediately as a logarithm, bypassing the need for the intermediate sum over k as in 
(23), but the logarithm appears with the ‘wrong’ sign, leading instead of (24) to a 
product of reciprocals, whose expansion reinstates the repetitions in the pseudo-orbits. 

An interesting feature of (30) is the rapid decrease in the contribution to pseudo- 
orbits from multiple repetitions: for large mp (or large instability exponent A p ) ,  we find 

Thus the most important long pseudo-orbits are those composed of primitive orbits 
traversed once. 
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So far our manipulations have been purely formal, and the resulting series ( 2 7 )  for 
the spectral determinant shares the disadvantages of the periodic-orbit sum (1 1) from 
which it was obtained: for real E it diverges, and any truncation of it is complex rather 
than real. The final step is to argue, by analogy with the Riemann-Siege1 formula, that 
the appropriate resummation of the tail of the series reproduces, one by one, the 
complex conjugates of the terms in the head of the series. If this is correct, ( 2 7 )  can 
be rewritten to give our main result: in the semiclassical limit, energy levels are given 
by the finite quantum condition 

9 , , < 3 * ( E )  

A ( E  ) = 2 B (  E ) 1 C, ( E )  COS{ .4”, ( E ) /  R - TJ( E ) }  = 0 (34) 
n = O  

over pseudo-orbits with periods Yn (defined by analogy with the actions ( 2 9 ) )  less 
than the value Y*( E )  for which the argument of the cosine is locally stationary. This 
is given by 

d 
- [ Yn (E ) /  h - TJ?( E )]  = 0 
d E  

from which we find 

h d ( E )  
Y*(E) =y 

(35)  

L 

where d ( E )  is the smoothed level density (derivative of (3) ) .  It is striking-and surely 
not accidental-that this truncation is just what would have been expected on the basis 
of the uncertainty principle, ensuring that bootstrapping relates long orbits, which 
generate the short-range spectral correlations, to short orbits, which generate long-range 
correlations, the symmetry point being correctly located at the mean level spacing. 

There are two reasons why the formula (34) is an attractive candidate for the correct 
analytic continuation of ( 2 7 )  into the strip where it diverges. First, it is real when E 
is real, as A ( E )  must be. Second, when Im E > 0 the additional terms introduced by 
resurgence are all exponentially smaller than the original terms, which survive into the 
domain where ( 2 7 )  converges and so match smoothly onto ( 2 7 ) .  

5. Discussion 

We have derived for the spectral determinant A ( E )  an analogue of the Dirichlet series 
representation of the Riemann zeta function. A natural resummation of this series, 
retaining two important analytical properties of the function, was then proposed by 
analogy with the Riemann-Siege1 formula. We have to admit, however, that the 
resurgence we are conjecturing, in which the ‘tail’ terms of ( 2 7 ) ,  i.e. the long orbits, 
regenerate the ‘head’ terms, i.e. the short orbits, would appear to require a miraculous 
conspiracy. A direct demonstration would require far more refined information about 
the actions of the long periodic orbits than we possess. We are not even able to establish 
the resurgence of the first term, and thereby derive by resummation the elementary 
result ( 2 ) ,  equivalent to what in previous work (Berry 1985) was called the semiclassical 
sum rule (for a derivation of this rule in the Riemann case, see Keating 1991). 

Nevertheless, some such bootstrap identity must exist if there is to be any meaningful 
quantization condition in which individual periodic orbits play a role. And the regener- 
ation of the first term by the resummation of the tail occurs even in one dimension, 



4846 M V Berry and J P Keating 

as we now show. For an anharmonic oscillator there is a single primitive orbit whose 
action S is the phase-space area of the energy contour, related to the smoothed spectral 
staircase by 

- s  
N = - .  

The Maslov index is x 
contains one term and 

2 x h  (37) 

( x / 2  from each turning point) so that in (12) the product 

The determinant factor is absent in one dimension, so 

{ ( - I ) ~  exp{imS/h}] 
A ( E )  = B ( E )  exp{-ixJ?(E)} exp - 1 

m = l  m 

= B(  E )  exp{ -ix$( E ) }  exp log[ 1 + exp{iS/ h } ]  

= B ( E )  exp(-ix$(E)}[l +exp{i2xs(E)}] (39) 

giving the quantization condition (2), which is the correct semiclassical result in one 
dimension. 

If the quantum condition (34) is correct, it represents a considerable improvement 
over the unresummed Gutzwiller formula ( 1  l ) ,  employed in the spectral staircase (8) 
(or its derivative, the spectral density). 

Without resummation, the best hope is to see the levels emerging in the form of 
singularities (step or delta) as more orbits are included in the sum. This will not happen 
if the series is evaluated for real E, because it diverges. If it is evaluated on the boundary 
of convergence, given by (13), the singularities can at best be resonances of width 
Im E, and individual levels will not be resolved if Im E exceeds the mean level 
separation. For example, in planar quantum billiards with area d and perimeter 2 
this leads to the expectation that only the first Nmax levels could be resolved, where 

d 
Y 2  N,,,,, = 4n ix3  - - n; x 2 .  

Here nb is the 'chaos bounce number', defined as the chaos time' l /A(E) multiplied 
by the particle speed and divided by the mean distance x d / 2  between bounces (i.e. 
the number of n-bounce periodic orbits proliferates as exp(n/nb)/n).  And for the 
Riemann zeros 

Nm,, = (477 - 1 )  exp(4x) - 3 x lo6, (41) 

These limitations do not prevent the determination of low levels without resummation. 
This has been achieved by Gutzwiller (1971) for the anisotropic Kepler problem, and 
by Berry (1985) for the Riemann zeros. (Gutzwiller (1982) obtained more levels for 
the anisotropic Kepler problem using a resummation based on the symbolic dynamics 
of that particular problem.) It should also be remarked that alternative regularizations 
than making E imaginary, for example Gaussian smoothing (Delsarte 1966 and Aurich 
e? a1 1988, see also the discussion by Berry 1990) hold out the hope of generating 
individual high levels without resummation, but still involve infinite series and the 
identification of singularities. 
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With resummation, however, it is necessary only to find the zeros of a finite real 
function, which is possible in principle for arbitrarily high levels, i.e. far beyond the 
entropy barrier (13) underlying (40) and (41). 

To assess the practicality of our procedure based on (34), we estimate the number 
Npseud(N) of pseudo-orbits necessary to obtain K levels. This is the number of 
pseudo-orbits with period less than Y*, given by (36). Like ordinary orbits, pseudo- 
orbits proliferate exponentially with period, the exponent being AY, but there are more 
of them, and we conjecture the law 

Npseud+exp(AY) as y + m  (42) 

(this is exact for the Riemann case, for which the period of the nth pseudo-orbit is 
logn). Thus from (36) we obtain 

N p s e u d ( W  = exp{rAhd(E)). (43) 

We work this out for two examples. 
For the Riemann zeros, A = h = 1, and the density of zeros follows from (16), giving 

= J~ / log (K/ log (N/ log  . . * )) - n. (44) 

Thus Npseud increases more slowly than K. This implies that the discontinuities in the 
Riemann-Siege1 formula (18), caused by the jumps in its upper limit, get increasingly 
sparse in comparison with the zeros. This is one reason why the formula is so useful 
in practice. (We should remark that the Riemann-Siege1 formula contains corrections 
(Edwards 1974), which we have not discussed, whose effect is to remove the discon- 
tinuities in successive derivatives of A ( E ) ) .  

For planar billiards, as introduced before (40), a similar argument leads to 

For a non-relativistic particle moving in any D-dimensional scaling potential, we find 
a similar expression with exponent proportional to XN.(D-l)’D . Now N p s e u d  increases 
faster than X .  This means that the work required to calculate X eigenvalues increases 
faster than N, thereby compromising the computational value of the quantum condition. 
If the classical orbits have a sufficiently simple symbolic organization, it might be 
possible to  regroup the pseudo-orbits as in the curvature expansions of CvitanoviE 
and Eckhardt (1989) and thereby substantially reduce the computational labour (this 
technique seems to fail for the Riemann zeros). 

The rapid growth of Npseud(X) also indicates that the discontinuities in the semi- 
classical spectral determinant become denser in comparison with the level spacing. 
However, the total contribution from the terms which appear in the range Ej sz E 6 E,+, , 
compared with those already present in the sum, will not exceed d(1og Npseud)/dN 
which does vanish as N + 00, and moreover the discontinuities are exponentially small; 
therefore we do not expect their proliferation to destroy the discrimination of the zeros. 
(We have not found any systematic method for removing the discontinuities.) 

If these difficulties can be resolved, there arises the question of the relation between 
the exact energy levels and the zeros of the Riemann-Siege1 lookalike approximation 
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for A ( E ) .  Although the approximate levels have the correct density and, one may 
hope, the correct fluctuation statistics, they are unlikely to correspond one by one with 
the exact levels. This is because we started with Gutzwiller’s series (1 l) ,  which is a 
semiclassical approximation whose corrections are of order h2  and hence would shift 
the levels by an amount which is not small compared to their spacings. (Another way 
to see this is to note that our A ( E )  contains only canonically invariant information 
about the periodic orbits, whereas the levels depend to order h2 on the operator-ordering 
convention employed to quantize the system (Wilkinson 1988)). 

In any case, it would be helpful to have a careful numerical exploration of the 
quantization formula ( 3 7 ) ,  to assess the importance of the proliferating discontinuities 
just discussed, and discover whether levels can be determined beyond the number 
N,,,,, (cf (40)) resolvable without resummation, determined by the entropy barrier. 
One candidate system is billiards on the pseudosphere (Balazs and Voros 1986). Dr 
M Sieber has kindly carried out a preliminary test of ( 3 7 )  for the planar hyperbola 
billiard, for which many periodic orbits are available (Sieber and Steiner 1990). This 
has infinite area, so that (45) does not apply. The test shows that at least the lowest 
ten levels can be discriminated. 
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